aegis_sim.parameterization
1import logging 2from aegis_sim import constants 3from aegis_sim.parameterization.parametermanager import ParameterManager 4 5parametermanager = ParameterManager() 6 7traits = None # will be redefined below in init_traits 8expected_phenotype_length = None # will be redefined below in init_traits 9 10 11def init_traits(self): 12 """ 13 Here the trait order is hardcoded. 14 """ 15 from aegis_sim.parameterization.trait import Trait 16 17 traits = {} 18 self.expected_phenotype_length = 0 19 20 next_trait_start_position = 0 21 for traitname in constants.GENETIC_TRAITS: 22 trait = Trait( 23 name=traitname, 24 cnf=parametermanager.parameters, 25 start_position=next_trait_start_position, 26 genarch_type=parametermanager.parameters.GENARCH_TYPE, 27 MODIF_GENOME_SIZE=parametermanager.parameters.MODIF_GENOME_SIZE, 28 ) 29 traits[traitname] = trait 30 next_trait_start_position = trait.end 31 32 if trait.evolvable: 33 if trait.agespecific: 34 self.expected_phenotype_length += parametermanager.parameters.AGE_LIMIT 35 else: 36 self.expected_phenotype_length += 1 37 38 logging.info(f"Expected phenotype length is {self.expected_phenotype_length}") 39 self.traits = traits
parametermanager =
<aegis_sim.parameterization.parametermanager.ParameterManager object>
traits =
None
expected_phenotype_length =
None
def
init_traits(self):
12def init_traits(self): 13 """ 14 Here the trait order is hardcoded. 15 """ 16 from aegis_sim.parameterization.trait import Trait 17 18 traits = {} 19 self.expected_phenotype_length = 0 20 21 next_trait_start_position = 0 22 for traitname in constants.GENETIC_TRAITS: 23 trait = Trait( 24 name=traitname, 25 cnf=parametermanager.parameters, 26 start_position=next_trait_start_position, 27 genarch_type=parametermanager.parameters.GENARCH_TYPE, 28 MODIF_GENOME_SIZE=parametermanager.parameters.MODIF_GENOME_SIZE, 29 ) 30 traits[traitname] = trait 31 next_trait_start_position = trait.end 32 33 if trait.evolvable: 34 if trait.agespecific: 35 self.expected_phenotype_length += parametermanager.parameters.AGE_LIMIT 36 else: 37 self.expected_phenotype_length += 1 38 39 logging.info(f"Expected phenotype length is {self.expected_phenotype_length}") 40 self.traits = traits
Here the trait order is hardcoded.